Exercise 10

1. Calculate the conjugate of the following functions:
(a) Negative logarithm: $f(x)=-\sum_{i=1}^{N} \log x_{i}$;
(b) Quadratic function: $f(x)=x^{T} A x+b^{T} x+c$, where $A \in \mathbb{R}^{N \times N}$ is a symmetric positive definite matrix.
(c) Norm: $f(x)=\|x\|, x \in \mathbb{R}^{N}$.
2. Consider Assuming $a_{i}>0, p \geq 1$, use KKT condition to give the solution of the problem

$$
\min _{x \in \mathbb{R}^{N}}\left\{\sum_{i} \frac{a_{i}}{x_{i}}: x_{i}>0, \sum_{i} x_{i}^{p} \leq 1\right\}
$$

3.Let $f(x)=x \log x$ with $\operatorname{dom} f=\mathbb{R}_{+}$and $f(0)=a$. Determine whether f is a closed function.

